Problem #974 (Subarray Sums Divisible by K | Array, Hash Table, Prefix Sum)
Given an integer array nums
and an integer k
, return the number of non-empty subarrays that have a sum divisible by k
.
A subarray is a contiguous part of an array.
Example 1
Input:
nums = [4,5,0,-2,-3,1], k = 5
Output:
7
Explanation:
There are 7 subarrays with a sum divisible by k = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
</br>
Example 2
Input:
nums = [5], k = 9
Output:
0
Constraints
1 <= nums.length <= 3 * 10⁴
-10⁴ <= nums[i] <= 10⁴
2 <= k <= 10⁴
Solutions
Approach 1: Hash Table and Prefix Sum
Code
Java
class Solution {
public int subarraysDivByK(int[] arr, int k) {
int n = arr.length;
HashMap<Integer,Integer> map = new HashMap<>();
int sum = 0;
int count = 0;
for(int i = 0; i<n; i++){
sum+=arr[i];
if(sum%k==0)
count++;
int rem = sum%k;
if(rem<0)
rem = rem+k;
if(map.containsKey(rem))
count+=map.get(rem);
map.put(rem,map.getOrDefault(rem,0)+1);
}
return count;
}
}
C++
class Solution {
public:
int subarraysDivByK(vector<int>& nums, int k) {
int n = nums.size();
unordered_map<int, int> map;
int sum = 0;
int count = 0;
for(int i = 0; i < n; i++) {
sum += nums[i];
if(sum % k == 0) count++;
int rem = sum % k;
if(rem < 0) rem += k;
if(map[rem]) count += map[rem];
map[rem] = map[rem] + 1;
}
return count;
}
};
Python3
class Solution:
def subarraysDivByK(self, nums: List[int], k: int) -> int:
n = len(nums)
map = {}
sum = 0
count = 0
for i in range(n):
sum = sum + nums[i]
if sum % k == 0: count = count + 1
rem = sum % k
if rem < 0: rem = rem + k
if map.get(rem):
count = count + map[rem]
map[rem] = map[rem] + 1
else:
map[rem] = 1
return count
Complexity
- Time:
O(n)
- Space:
O(n)