Problem #429 (N-ary Tree Level Order Traversal | Tree, Breadth-First Search)
Given an n-ary tree, return the level order traversal of its nodes’ values.
Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).
Example 1
Input:
root = [1,null,3,2,4,null,5,6] <br/>
Output:
[[1],[3,2,4],[5,6]]
Example 2
Input:
root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14] <br/>
Output:
[[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]
Constraints
- The height of the n-ary tree is less than or equal to 1000
- The total number of nodes is between [0, 104]
Solutions
Breadth-First Search(Iterative) - Queue
Code
- Java
class Solution { public List<List<Integer>> levelOrder(Node root) { if(root == null) return new ArrayList<List<Integer>>(); List<List<Integer>> res = new ArrayList<List<Integer>>(); Queue<Node> q = new LinkedList<Node>(); q.add(root); while(!q.isEmpty()){ List<Integer> level = new ArrayList<Integer>(); int n = q.size(); for(int i = 0; i < n; i++){ Node curr = q.poll(); level.add(curr.val); for(Node node: curr.children){ q.add(node); } } res.add(level); } return res; } }
- C++
class Solution { public: vector<vector<int>> levelOrder(Node* root) { if(!root) return vector<vector<int>>(); vector<vector<int>> res; queue<Node*> q; q.push(root); while(!q.empty()){ vector<int> level; int n = q.size(); for(int i = 0; i < n; i++){ Node* curr = q.front(); q.pop(); level.push_back(curr->val); for(Node* node: curr->children){ q.push(node); } } res.push_back(level); } return res; } };
- Python3
class Solution: def levelOrder(self, root: 'Node') -> List[List[int]]: if not root: return [] res = [] q = [root] while len(q): level = [] for i in range (len(q)): curr = q.pop(0) level.append(curr.val) for node in curr.children: q.append(node) res.append(level) return res;
Complexity
- Time:
O(n^2)
, all nodes are traversed twice. - Space:
O(n)
Breadth-First Search(Iterative) - HashMap and Queue
Code
- Java
class Solution { public List<List<Integer>> levelOrder(Node root) { if(root == null) return new ArrayList<List<Integer>>(); Map<Integer, List<Integer>> map = new HashMap<Integer, List<Integer>>(); Queue<Node> q = new LinkedList<Node>(); q.add(root); int r = 0; map.put(r, new ArrayList<Integer>()); map.get(r++).add(root.val); int minNode = 1; int maxNode = 1 + root.children.size(); int nodeCount = maxNode; while(!q.isEmpty()){ Node curr = q.poll(); int n = curr.children.size(); if(!map.containsKey(r)) map.put(r, new ArrayList<Integer>()); for(Node node: curr.children){ map.get(r).add(node.val); maxNode += node.children.size(); q.add(node); minNode++; } if(minNode == nodeCount && n != 0){ nodeCount = maxNode; r++; } } List<List<Integer>> lists = new ArrayList<List<Integer>>(); for(int i = 0; i < r; i++){ lists.add(map.get(i)); } return lists; } }
Complexity
- Time:
O(n^2)
, all nodes are traversed twice. - Space:
O(n)